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The mechanical properties of a casting are largely de-
pendent on secondary dendrite arms spacing, since it
determines the solute segregation, the final distribution
of inter-dendrite phases, and porosity [1]. Owing to the
remelting and resolidification mechanism, dendrite arm
coarsening contributes significantly to homogenization
during solidification. While a large number of analyti-
cal and numerical studies of the dendritic solidification
of binary alloys exist [2], few attempts have been made
toward developing a model for multicomponent alloys.

Roósz, Kraft et al. [3, 4] have presented numerical
models for the prediction of dendrite arm coarsening
in multicomponent alloys. The back diffusion in the
solid must be determined by using a time consuming
finite difference scheme. In this paper, the back diffu-
sion behavior is easily solved by introducing the diffu-
sion layer thickness. After comparing the results of this
simple solution with the experimental results of former
researchers, it is shown that this simple model is sat-
isfactory for the prediction of dendrite arm coarsening
during the solidification process.

Coarsening of the secondary dendrite arms is de-
scribed by the semi-empirical relationship in binary
alloys [3]:

[λ(t)]3 − λ3
0 =

∫ t

0
B M(T ) dt (1)

where λ(t) is the secondary dendrite arm spacing and
λ0 is its initial spacing. B is a geometric factor relating
curvature differences to λ and M(T ) includes all tem-
perature dependent terms. Taking the dendrite coars-
ening results of Kattamis [2], Roósz has defined the
coarsening parameter M(T ) as

M(T ) = γ DL

�Hm(1 − k)CL
(2)

where γ is the energy of solid/liquid interface, �H is
the latent heat of solidification, m is the liquidus slope,
k is the solute partition coefficient, DL is the solute
diffusion coefficient in liquid phase and CL is the solute
composition in liquid phase.

Roósz, Kraft et al. have extended this model to multi-
component alloys by assuming that the coarsening pro-
cess at each time step is governed by the element with
the lowest value of Mi(T ), the subscript i refers to ele-

ment i , i.e.,

M(T ) = min{M1(T ), M2(T ), . . . , Mn(T )}. (3)

Generally this is the element with the lowest liquid dif-
fusion coefficient.

The evolution of the solute profiles in the volume
element is shown schematically in Fig. 1.

During the time interval of dt, the solid/liquid inter-
face moves by ds and the length of the volume element
X increases by dX because of an increase in dendrite
arm spacing. Coarsening is thus considered by using a
volume element increasing in length according to

X (t) = λ(t)/2 (4)

where λ(t) is given by Equation 1.
For each solute, the mass balance yields

CL,i(1 − ki) ds = (X − s)dCL,i + (CL,i − C0,i)dX

+Ds
∂Cs(s, t)

∂x
dt. (5)

The back diffusinon flux during the time interval in
solid phase, i.e., the shaded square A4 in Fig. 2 can be
approximately described as [5]

A4 = Ds
∂Cs(s, t)

∂x
dt = 1

2
δsdC∗

s (6)

where δs is the diffusion layer thickness and can be
described as

δs = 2Ds

V
(7)

where V is the interface velocity, i.e., V = ds/dt . In
the analysis, the local equilibrium condition at the
solid/liquid interface has been applied, i.e., C∗

s = kCl,
where k is the solute partition coefficient.

So the solute balance for each solute i can be written
as

Cl,i(1 − ki) ds = (X − s) dCl,i + (Cl,i − C0,i)dX

+ki Ds

V
dCl,i. (8)

The relationship between cooling time t , temperature
T , and amount of solid phase ms, is given by the heat
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Figure 1 Solute concentration in a solidifying volume element with
coarsening.

Figure 2 Comparison of calculated dendrite arm spacings and experi-
mental values.

balance. Taking into the account the heat content of the
crucible, we get

dQ

dt
= �H

dms

dt
+ (msSs + mlSl + mcSc)

dT

dt
. (9)

The heat flux during solidification can be calculated
from the cooling rate at liquidus temperature,

.
T1, ac-

cording to

dQ

dt
=

.
T1 (m1s1 + mcSc)(T − T0)

T1 − T0
. (10)

If T (t) is known from the cooling condition, the so-
lute compositions are readily determined by the phase
equilibrium relation, i.e.,

T = Tm +
n∑

i=1

+miCl,i (11)

During a time interval �t , the temperature may
change to T (t + �t) according to the cooling curve.
The increase of the secondary dendrite arm spacing
can be determined by Equation 1. By assuming a little
movement of the solid/liquid interface, ds, the solute
compositions can be deduced form the mass balance
Equation 8. So the system temperature can be obtained

from the phase equilibrium relation, i.e., Equation 11.
Its difference from the calculated temperature by Equa-
tions 9 and 10 should be less than 0.1 K. If this is alright,
the numerical process could be carried out during the
next time interval. If it is not, ds should be adjusted
until the temperature criterion is satisfied.

The initial conditions for Equation 8 are specified as
follows:

s(t = 0) = X (t = 0) = 0; CL,i(t = 0) = C0,i. (10)

Here, the application of this model to the industrial
Al Cu Mg alloys is executed in detail. The experi-
maental results of five Al Cu Mg alloys obtained by
former researchers [6] are used to demonstrate the ap-
plicability and precision of this model. The composi-
tions and cooling rate at liquidus temperature are given
in Table I. The values of physical constants used in the
calculation are listed in Table II.

TABLE I Compositions and cooling rates at the liquidus temperature
of different alloys

Composition (wt%) Cooling rate (Ks−1)

Alloy no. Mg Cu 1 2 3 4

1 1.35 3.98 18.1 3.97 2.70 1.08
2 0.94 4.11 21.3 2.69 2.70 1.27
3 0.45 4.00 18.5 3.91 2.63 1.60
4 0.87 5.07 18.7 3.71 2.61 0.90
5 0.98 3.12 22.1 1.08 2.34 1.08

TABLE I I The physical parameters used in the calculation

Parameters Unit Value

Dl,cu m2·s−1 1.05 × 10−7 exp(−2860/T )
Dl,Mg m2·s−1 9.90 × 10−5 exp(−8600/T )
Ds,Cu m2·s−1 0.29 ×10−4 exp(−15600/T )
Ds,Cu m2·s−1 0.37 × 10−4 exp(−14900/T )
Ss J·Kg−1·K−1 1.14 × 103

S1 J·Kg−1·K−1 1.14 × 103

SC J·Kg−1·K−1 1.17 × 103

�H J·Kg−1 3.97 × 103

γ J·m−2 0.093

Figure 3 Calculated vs. measured amount of eutectic.
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In Fig. 2, the experimental and the calculated sec-
ondary dendrite arm spacings are shown. Very good
agreement between the measured results and calculated
values has been achieved.

The calculated and experimental amounts of eutectic
values are shown qualitatively in Fig. 3. The calculated
eutectic amounts agree reasonably well with the mea-
sured values.

By introducing the diffusion layer thickness, the back
diffusion behavior is easily solved without the time con-
suming finite difference scheme. The application of the
simplified model to Al Cu Mg alloys is studied in
detail. The good agreement between the experimental
results and the calculated values shows that this simpli-
fied model is satisfactory for the prediction of dendrite

arm coarsening during solidification in multicompo-
nent alloys.
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